The present study was aimed at investigating the effect of fullerenol C60(OH)36 on chosen parameters of the human erythrocyte membrane and the preliminary estimation of the properties of fullerenol as a potential linking agent transferring the compounds (e.g., anticancer drugs) into the membrane of erythrocytes. The results obtained in this study confirm the impact of fullerenol on erythrocyte cytoskeletal transmembrane proteins, particularly on the band 3 protein. The presence of fullerenol in each of the concentrations used prevented degradation of the band 3 protein. The results show that changes in the morphology of red blood cells caused by high concentrations of fullerenol (up to 150mg/L) did not lead to increased red blood cell hemolysis or the leakage of potassium. Moreover, fullerenol slightly prevented hemolysis and potassium efflux. The protective effect of fullerenol at the concentration of 150mg/L was 20.3%, and similar results were obtained for the efflux of potassium. The study shows that fullerenol slightly changed the morphology of the cells and, therefore, altered the intracellular organization of erythrocytes through the association with cytoskeletal proteins.
Related researches 71 articles
![<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>](https://biofullerene.com/wp-content/uploads/2024/03/20-years-research-help-with-oncology-356x356.webp)
![Fullerenol has pronounced antiradical properties in the working concentration range](https://biofullerene.com/wp-content/uploads/2023/06/2021-se-rdm-molecules-all-312x356.png)
![The transcriptome profile of RPE cells by the fullerenol against hydrogen peroxide stress](https://biofullerene.com/wp-content/uploads/2022/12/antioxidant-vector-icon-radical-free-260nw-1596766771.jpg)
![Toxicity and Antioxidant Activity of Fullerenol C<sub>60,70</sub> with Low Number of Oxygen Substituents](https://biofullerene.com/wp-content/uploads/2022/12/antioxidant-vector-icon-radical-free-260nw-1596766771.jpg)
![Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications](https://biofullerene.com/wp-content/uploads/2022/12/678-6786008_software-418x356.png)
![Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12085167-356x356.jpg)
![INHIBITORY POTENTIAL OF POLYHYDROXYLATED FULLERENES AGAINST PROTEIN TYROSINE PHOSPHATASE 1B](https://biofullerene.com/wp-content/uploads/2022/12/sol5379-356x356.jpg)
![The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster](https://biofullerene.com/wp-content/uploads/2022/12/PCORI-Story-Women-Pa-314x356.png)
![Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees](https://biofullerene.com/wp-content/uploads/2022/12/1471354356_medonosny-1-500x293.jpg)
![Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups](https://biofullerene.com/wp-content/uploads/2022/12/360_F_308785794_MbgN-500x228.jpg)
![Interaction of fullerenol with lysozyme investigated by experimental and computational approaches](https://biofullerene.com/wp-content/uploads/2022/12/png-clipart-biomolec-500x284.png)
![Effects of hydroxyl group distribution on the reactivity, stability and optical properties of fullerenols](https://biofullerene.com/wp-content/uploads/2022/12/unnamed_1-500x349.jpg)
![Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8](https://biofullerene.com/wp-content/uploads/2022/12/images.jpg)
![Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins](https://biofullerene.com/wp-content/uploads/2022/12/protein-3jpg57eb1785-356x356.jpg)
![The properties of small fullerenol cluster (C60(OH)24)7: computer simulation](https://biofullerene.com/wp-content/uploads/2022/12/unnamed-3-500x257.jpg)
![The structural studies of fullerenol C60(OH)24 and nitric oxide mixture in water solvent – MD simulation](https://biofullerene.com/wp-content/uploads/2022/12/n-a.jpg)
![Production of monoclonal antibodies against fullerene C60 and development of a fullerene enzyme immunoassay](https://biofullerene.com/wp-content/uploads/2022/12/hd-antibody-blue-485x356.png)
![Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations](https://biofullerene.com/wp-content/uploads/2022/12/1412-356x356.jpg)
![Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice](https://biofullerene.com/wp-content/uploads/2022/12/11588808685cy47cvm6-412x356.png)
![Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine](https://biofullerene.com/wp-content/uploads/2022/12/hiv-356x356.png)
![Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites](https://biofullerene.com/wp-content/uploads/2022/12/medicircle-nanomedic-500x281.jpg)
![Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation](https://biofullerene.com/wp-content/uploads/2022/12/investigation-2-500x333.jpg)
![Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles](https://biofullerene.com/wp-content/uploads/2022/12/240fed07347d44de5685-356x356.png)
![Fullerenol C60(OH)24 increases ion permeability of lipid membranes in a pH-dependent manner](https://biofullerene.com/wp-content/uploads/2022/12/image3-358x356.png)
![Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12085167-356x356.jpg)
![Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12925559-440x356.jpg)
![Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards](https://biofullerene.com/wp-content/uploads/2022/12/pngtree-an-icon-sign-356x356.jpg)
![Fullerenol C 60(OH) 36 protects human erythrocyte membrane against high-energy electrons](https://biofullerene.com/wp-content/uploads/2022/12/1-14308-500x281.jpg)
![Molecular Semiconductor Surfactants with Fullerenol Heads and Colored Tails for Carbon Dioxide Photoconversion](https://biofullerene.com/wp-content/uploads/2022/12/71092153-fe1fb500-21-500x343.png)
![Fullerenol Nanoparticles Eradicate Helicobacter pylori via pH-Responsive Peroxidase Activity](https://biofullerene.com/wp-content/uploads/2022/11/701f0ea8629699ea4b87-500x333.jpg)