Biomineralization is a typical methodology developed by nature to produce calcium-based materials. A method mimicking this process has nowadays become popular for the preparation of artificial organic-inorganic hybrids. Here, Cu3(PO4)2#nbsp;crystals with a flowerlike morphology have been prepared using water-soluble derivatives of fullerene C60#nbsp;as templates. In a typical system, flowerlike crystals of Cu3(PO4)2#nbsp;(denoted FLCs-Cu) were obtained by simply dropping an aqueous solution of CuSO4#nbsp;into phosphate-buffered saline (PBS) containing a highly water-soluble multiadduct of C60#nbsp;(fullerenol). The best condition for the preparation of FLCs-Cu appeared at 0.20 mg·mL-1#nbsp;fullerenol and 0.10 mol·L-1#nbsp;PBS. During the formation of FLCs-Cu, fullerenol acts as a template and its content in FLCs-Cu is trace (less than 5% by atom) as confirmed by scanning electron microscopy mapping and thermogravimetric analysis. This feature makes fullerenol reusable, and the FLCs-Cu can be prepared repeatedly using the same fullerenol aqueous solution at least 10 times without a noticeable change in the morphology. The N2#nbsp;adsorption/desorption isotherm showed that the doping of fullerenol increased the specific surface area of the Cu3(PO4)2#nbsp;crystal. When fullerenol was replaced by C60#nbsp;monoadducts that are cofunctionalized with a pyrrolidine cation and oligo(poly(ethylene oxide)) chains, FLCs-Cu can form as well, indicating that the strategy of using water-soluble C60#nbsp;derivative as a template to get FLCs-Cu is universal. As a typical example of practical applications, the photocatalytic activity of the FLCs-Cu was investigated toward the degradation of dyes including rhodamine B and rhodamine 6G. In both cases, efficient photodegradation has been confirmed.
Related researches 71 articles
![<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>](https://biofullerene.com/wp-content/uploads/2024/03/20-years-research-help-with-oncology-356x356.webp)
![Fullerenol has pronounced antiradical properties in the working concentration range](https://biofullerene.com/wp-content/uploads/2023/06/2021-se-rdm-molecules-all-312x356.png)
![The transcriptome profile of RPE cells by the fullerenol against hydrogen peroxide stress](https://biofullerene.com/wp-content/uploads/2022/12/antioxidant-vector-icon-radical-free-260nw-1596766771.jpg)
![Toxicity and Antioxidant Activity of Fullerenol C<sub>60,70</sub> with Low Number of Oxygen Substituents](https://biofullerene.com/wp-content/uploads/2022/12/antioxidant-vector-icon-radical-free-260nw-1596766771.jpg)
![Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications](https://biofullerene.com/wp-content/uploads/2022/12/678-6786008_software-418x356.png)
![Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12085167-356x356.jpg)
![INHIBITORY POTENTIAL OF POLYHYDROXYLATED FULLERENES AGAINST PROTEIN TYROSINE PHOSPHATASE 1B](https://biofullerene.com/wp-content/uploads/2022/12/sol5379-356x356.jpg)
![The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster](https://biofullerene.com/wp-content/uploads/2022/12/PCORI-Story-Women-Pa-314x356.png)
![Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees](https://biofullerene.com/wp-content/uploads/2022/12/1471354356_medonosny-1-500x293.jpg)
![Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups](https://biofullerene.com/wp-content/uploads/2022/12/360_F_308785794_MbgN-500x228.jpg)
![Interaction of fullerenol with lysozyme investigated by experimental and computational approaches](https://biofullerene.com/wp-content/uploads/2022/12/png-clipart-biomolec-500x284.png)
![Effects of hydroxyl group distribution on the reactivity, stability and optical properties of fullerenols](https://biofullerene.com/wp-content/uploads/2022/12/unnamed_1-500x349.jpg)
![Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8](https://biofullerene.com/wp-content/uploads/2022/12/images.jpg)
![Influences of the size and hydroxyl number of fullerenes/fullerenols on their interactions with proteins](https://biofullerene.com/wp-content/uploads/2022/12/protein-3jpg57eb1785-356x356.jpg)
![The properties of small fullerenol cluster (C60(OH)24)7: computer simulation](https://biofullerene.com/wp-content/uploads/2022/12/unnamed-3-500x257.jpg)
![The structural studies of fullerenol C60(OH)24 and nitric oxide mixture in water solvent – MD simulation](https://biofullerene.com/wp-content/uploads/2022/12/n-a.jpg)
![Production of monoclonal antibodies against fullerene C60 and development of a fullerene enzyme immunoassay](https://biofullerene.com/wp-content/uploads/2022/12/hd-antibody-blue-485x356.png)
![Mechanism of taq DNA polymerase inhibition by fullerene derivatives: insight from computer simulations](https://biofullerene.com/wp-content/uploads/2022/12/1412-356x356.jpg)
![Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice](https://biofullerene.com/wp-content/uploads/2022/12/11588808685cy47cvm6-412x356.png)
![Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine](https://biofullerene.com/wp-content/uploads/2022/12/hiv-356x356.png)
![Fullerenol C₆₀(OH)₃₆ could associate to band 3 protein of human erythrocyte membranes](https://biofullerene.com/wp-content/uploads/2022/12/1043132-356x356.png)
![Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites](https://biofullerene.com/wp-content/uploads/2022/12/medicircle-nanomedic-500x281.jpg)
![Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation](https://biofullerene.com/wp-content/uploads/2022/12/investigation-2-500x333.jpg)
![Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles](https://biofullerene.com/wp-content/uploads/2022/12/240fed07347d44de5685-356x356.png)
![Fullerenol C60(OH)24 increases ion permeability of lipid membranes in a pH-dependent manner](https://biofullerene.com/wp-content/uploads/2022/12/image3-358x356.png)
![Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12085167-356x356.jpg)
![Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy](https://biofullerene.com/wp-content/uploads/2022/12/istockphoto-12925559-440x356.jpg)
![Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards](https://biofullerene.com/wp-content/uploads/2022/12/pngtree-an-icon-sign-356x356.jpg)
![Fullerenol C 60(OH) 36 protects human erythrocyte membrane against high-energy electrons](https://biofullerene.com/wp-content/uploads/2022/12/1-14308-500x281.jpg)
![Molecular Semiconductor Surfactants with Fullerenol Heads and Colored Tails for Carbon Dioxide Photoconversion](https://biofullerene.com/wp-content/uploads/2022/12/71092153-fe1fb500-21-500x343.png)
![Fullerenol Nanoparticles Eradicate Helicobacter pylori via pH-Responsive Peroxidase Activity](https://biofullerene.com/wp-content/uploads/2022/11/701f0ea8629699ea4b87-500x333.jpg)