Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50-150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100-150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.
Related researches 23 articles
![Effects of fullerenol nanoparticles on kidney tissue in sevoflurane‑treated rats](https://biofullerene.com/wp-content/uploads/2022/11/mrt-pochek-sds-475x356.jpg)
![Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees](https://biofullerene.com/wp-content/uploads/2022/11/1471354356_medonosny-500x293.jpg)
![The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity](https://biofullerene.com/wp-content/uploads/2022/11/drawing-3277946_960_-500x333.jpg)
![Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol](https://biofullerene.com/wp-content/uploads/2022/11/7953766-356x356.png)
![Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents](https://biofullerene.com/wp-content/uploads/2022/11/159-1591666_non-toxi-348x356.png)
![The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster](https://biofullerene.com/wp-content/uploads/2022/11/cut-photoru-1-383x356.jpg)
![In vitro and in vivo study of the toxicity of fullerenols С 60, С 70 and С 120 О obtained by an original two step method](https://biofullerene.com/wp-content/uploads/2022/11/istockphoto-95811816-485x356.jpg)
![Toxicity of functionalized fullerene and fullerene synthesis chemicals](https://biofullerene.com/wp-content/uploads/2022/11/quality-stamp-356x356.png)
![Impact of Titanium Dioxide and Fullerenol Nanoparticles on Caco-2 Gut Epithelial Cells](https://biofullerene.com/wp-content/uploads/2022/11/human_intestine-267x356.jpg)
![Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation](https://biofullerene.com/wp-content/uploads/2022/11/255-2559151_implemen-500x350.png)
![Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats](https://biofullerene.com/wp-content/uploads/2022/11/1200px-Doxorubicin-2-400x356.png)
![Effects of Fullerenols on Mouse Brain Microvascular Endothelial Cells](https://biofullerene.com/wp-content/uploads/2022/11/mrt-sosudov-shejnogo-475x356.jpg)
![Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders](https://biofullerene.com/wp-content/uploads/2022/11/Free-radicals-reacti-384x356.png)
![Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds](https://biofullerene.com/wp-content/uploads/2022/11/Biomolecules-321x356.png)
![Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts](https://biofullerene.com/wp-content/uploads/2022/11/i5Nn5wDrpntkLMxQb4EA-475x356.jpg)
![Fullerenol nanoparticles: toxicity and antioxidant activity](https://biofullerene.com/wp-content/uploads/2022/11/png-review-file-yell-500x313.png)
![Gene expression and biochemical responses in brain of zebrafish Danio rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C60(OH)18-22(OK4))](https://biofullerene.com/wp-content/uploads/2022/11/4033062-356x356.jpeg)
![Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability](https://biofullerene.com/wp-content/uploads/2022/11/360_F_256172461_TKfu-475x356.jpg)
![Effect of fullerenol C(60)(OH) (24) on lipid peroxidation of kidneys, testes and lungs in rats treated with doxorubicine](https://biofullerene.com/wp-content/uploads/2022/11/protection-advice-um-374x356.jpg)
![Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells](https://biofullerene.com/wp-content/uploads/2022/09/Fotosearch_k12708219-474x356.jpg)
![Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats](https://biofullerene.com/wp-content/uploads/2022/09/c_sergey_nivens_-_fo-500x333.jpg)