The current paper reviews the applications of luminescence bioassays for monitoring the results of low-intensity exposures which produce a stimulative effect. The impacts of radioactivity of different types (alpha, beta, and gamma) and bioactive compounds (humic substances and fullerenols) are under consideration. Bioassays based on luminous marine bacteria, their enzymes, and fluorescent coelenteramide-containing proteins were used to compare the results of the low-intensity exposures at the cellular, biochemical, and physicochemical levels, respectively. High rates of luminescence response can provide (1) a proper number of experimental results under comparable conditions and, therefore, proper statistical processing, with this being highly important for “noisy” low-intensity exposures; and (2) non-genetic, i.e., biochemical and physicochemical mechanisms of cellular response for short-term exposures. The results of cellular exposures were discussed in terms of the hormesis concept, which implies low-dose stimulation and high-dose inhibition of physiological functions. Dependencies of the luminescence response on the exposure time or intensity (radionuclide concentration/gamma radiation dose rate, concentration of the bioactive compounds) were analyzed and compared for bioassays of different organization levels.
Related researches 41 articles
![<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>](https://biofullerene.com/wp-content/uploads/2024/03/20-years-research-help-with-oncology-356x356.webp)
![Biological and biocompatible characteristics of fullerenols nanomaterials for tissue engineering](https://biofullerene.com/wp-content/uploads/2022/12/photo_2022-12-29_12-06-18-500x317.jpg)
![Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics](https://biofullerene.com/wp-content/uploads/2022/11/ImageForArticle_4620-500x333.jpg)
![Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line](https://biofullerene.com/wp-content/uploads/2022/11/212206-356x356.png)
![Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin](https://biofullerene.com/wp-content/uploads/2022/11/cancer-icon-2797418_-356x356.png)
![Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis](https://biofullerene.com/wp-content/uploads/2022/11/targeted-drug-delive-356x356.jpg)
![AFM-based study of fullerenol (C60(OH)24)-induced changes of elasticity in living SMCC-7721 cells](https://biofullerene.com/wp-content/uploads/2022/11/depositphotos_352541-356x356.jpg)
![Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities](https://biofullerene.com/wp-content/uploads/2022/11/0005-009-poluchenie--475x356.jpg)
![Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue](https://biofullerene.com/wp-content/uploads/2022/11/heartAttackCardiacAr-500x346.jpg)
![Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1](https://biofullerene.com/wp-content/uploads/2022/11/1725885-500x263.png)
![Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy](https://biofullerene.com/wp-content/uploads/2022/11/istockphoto-65584859-356x356.jpg)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/1200px-L-Asparaginsu-500x295.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/5AawkyZS8dY7T9C3AZwH-474x356.jpg)
![Molecular mechanism of Gd@C 82(OH) 22 increasing collagen expression: Implication for encaging tumor](https://biofullerene.com/wp-content/uploads/2022/11/4264665-356x356.png)
![Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization](https://biofullerene.com/wp-content/uploads/2022/11/xxx040-512_78628-356x356.png)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/icon-research2x-356x356.png)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/4970457-middle-500x202.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/360_F_337277306_bOwr-500x333.jpg)
![Identification differential behavior of Gd@C 82(OH) 22 upon interaction with serum albumin using spectroscopic analysis](https://biofullerene.com/wp-content/uploads/2022/11/market-research-icon-356x356.png)
![Mono-fullerenols modulating cell stiffness by perturbing actin bundling](https://biofullerene.com/wp-content/uploads/2022/11/pressure-resistance--356x356.jpg)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/Breast-Website-Infog-356x356.png)
![Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A](https://biofullerene.com/wp-content/uploads/2022/11/1rnu_assembly-1-356x356.jpeg)
![Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats](https://biofullerene.com/wp-content/uploads/2022/11/BTOB_Oxidative_Stres-356x356.png)