Free United States and Australia Shipping

Our site uses cookies to make for a more optimal experience. By continuing to browse
the site you are agreeing to our use of cookies. You can view our cookie information here.

Cart 0
[wcpbc_currency_switcher flag="0" currency_display_style="{code}$"]
Home Research

Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue

Share:

Link copied

Fullerenol (C60(OH)24) is present in aqueous solutions in the form of polyanion nanoparticles with particles’ size distribution within the range from 15 to 42 nm. In this research it is assumed that these features could enable fullerenol nanoparticles (FNPs) to bind positively charged molecules like doxorubicin (DOX) and serve as drug carriers. Considering this, fullerenol/doxorubicin nanocomposite (FNP/DOX) is formed and characterized by ultra-performance liquid chromatography tandem mass spectrometry, dynamic light scattering, atomic force microscopy and transmission electron microscopy. Measurements have shown that DOX did not significantly affect particle size (23 nm). It is also assumed that FNP/DOX could reduce the acute cardiotoxic effects of DOX in vivo (Wistar rats treated i.p.). In this study, quantitative real time polymerase chain reaction results have shown that treatment with DOX alone caused significant increase in mRNA levels of catalase (p < 0.05) enzyme indicating the presence of oxidative stress. This effect is significantly reduced by the treatment with FNP/DOX (p < 0.05). Furthermore, mRNA levels of antiapoptotic enzyme (Bcl-2) are significantly increased (p < 0.05) in all treated groups, particularly where FNP/DOX was applied, suggesting cell resistance to apoptosis. Moreover, ultrastructural analysis has shown the absence of myelin figures within the mitochondria in the heart tissue with FNP/DOX treatment, indicating reduction of oxidative stress. Hence, our results have implied that FNP/DOX is generally less harmful to the heart compared to DOX.

https://pubmed.ncbi.nlm.nih.gov/27811390/

Related researches 41 articles

<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>
Cancer / Transport / Delivery Various positive properties
Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use
Caging cancer
Cancer / Transport / Delivery
Caging cancer