Nanomaterials (NM) industry had grown in the last decade, although there are few studies concerning its potential toxicity effects on aquatic organisms. In this study the freshwater zebrafish (Danio rerio) was exposed to two kinds of carbon NM, single-wall carbon nanotubes (SWCNT) and fullerenol [C60(OH)18-22(OK4)] to analyze oxidative stress responses on fish brain. Adult zebrafish (mean mass: 0.52±0.01g) were submitted to intraperitoneal injections of SWCNT suspension and fullerenol solution (30mg/kg of fish), receiving one or two doses with a time interval of 24h. Results showed that total antioxidant capacity was lowered in brains of fish exposed 24h to fullerenol when compared to those from SWCNT treatment (p<0.05). After 48h, fullerenol induced higher expression of both catalytic and regulatory subunits of enzyme glutamate cysteine ligase when compared to control group (p<0.05), indicating an antioxidant behavior. In vitro assays showed a dual effect of SWCNT, since a pro-oxidant behavior was observed at low concentrations (0.1 and 1.0mg/L) and an antioxidant one at the highest concentration (10.0mg/L). Few biological responses were altered by this NM: decrease in total antioxidant capacity and induction of the expression of the transcription factor Nrf2 when compared to control group.
Related researches 23 articles
![The Effect of Fullerenol C<sub>60</sub>(OH)<sub>36</sub> on the Antioxidant Defense System in Erythrocytes](https://biofullerene.com/wp-content/uploads/2022/12/360_F_308785794_MbgN-500x228.jpg)
![Effects of fullerenol nanoparticles on kidney tissue in sevoflurane‑treated rats](https://biofullerene.com/wp-content/uploads/2022/11/mrt-pochek-sds-475x356.jpg)
![Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees](https://biofullerene.com/wp-content/uploads/2022/11/1471354356_medonosny-500x293.jpg)
![The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity](https://biofullerene.com/wp-content/uploads/2022/11/drawing-3277946_960_-500x333.jpg)
![Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol](https://biofullerene.com/wp-content/uploads/2022/11/7953766-356x356.png)
![Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents](https://biofullerene.com/wp-content/uploads/2022/11/159-1591666_non-toxi-348x356.png)
![The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster](https://biofullerene.com/wp-content/uploads/2022/11/cut-photoru-1-383x356.jpg)
![In vitro and in vivo study of the toxicity of fullerenols С 60, С 70 and С 120 О obtained by an original two step method](https://biofullerene.com/wp-content/uploads/2022/11/istockphoto-95811816-485x356.jpg)
![Toxicity of functionalized fullerene and fullerene synthesis chemicals](https://biofullerene.com/wp-content/uploads/2022/11/quality-stamp-356x356.png)
![Impact of Titanium Dioxide and Fullerenol Nanoparticles on Caco-2 Gut Epithelial Cells](https://biofullerene.com/wp-content/uploads/2022/11/human_intestine-267x356.jpg)
![Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation](https://biofullerene.com/wp-content/uploads/2022/11/255-2559151_implemen-500x350.png)
![Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats](https://biofullerene.com/wp-content/uploads/2022/11/1200px-Doxorubicin-2-400x356.png)
![Effects of Fullerenols on Mouse Brain Microvascular Endothelial Cells](https://biofullerene.com/wp-content/uploads/2022/11/mrt-sosudov-shejnogo-475x356.jpg)
![Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders](https://biofullerene.com/wp-content/uploads/2022/11/Free-radicals-reacti-384x356.png)
![Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds](https://biofullerene.com/wp-content/uploads/2022/11/Biomolecules-321x356.png)
![Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts](https://biofullerene.com/wp-content/uploads/2022/11/i5Nn5wDrpntkLMxQb4EA-475x356.jpg)
![Fullerenol nanoparticles: toxicity and antioxidant activity](https://biofullerene.com/wp-content/uploads/2022/11/png-review-file-yell-500x313.png)
![Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability](https://biofullerene.com/wp-content/uploads/2022/11/360_F_256172461_TKfu-475x356.jpg)
![Effect of fullerenol C(60)(OH) (24) on lipid peroxidation of kidneys, testes and lungs in rats treated with doxorubicine](https://biofullerene.com/wp-content/uploads/2022/11/protection-advice-um-374x356.jpg)
![Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells](https://biofullerene.com/wp-content/uploads/2022/09/Fotosearch_k12708219-474x356.jpg)
![Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats](https://biofullerene.com/wp-content/uploads/2022/09/c_sergey_nivens_-_fo-500x333.jpg)