Radiotherapy-induced toxicity is a major dose-limiting factor in anti-cancer treatment. Ionizing radiation leads to the formation of reactive oxygen and nitrogen species (ROS/RNS) that are associated with radiation-induced cell death. Investigations of biological effects of fullerenol have provided evidence for its ROS/RNS scavenger properties in vitro and radioprotective efficiency in vivo. Therefore we were interested to evaluate its radioprotective properties in vitro in the human erythroleukemia cell line. Pre-treatment of irradiated cells by fullerenol exerted statistically significant effects on cell numbers and the response of antioxidative enzymes to X-ray irradiation-induced oxidative stress in cells. Our study provides evidence that the pre-treatment with fullerenol enhanced the enzymatic activity of superoxide dismutase and glutathione peroxidase in irradiated K562 cells.
Related researches 41 articles
![<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>](https://biofullerene.com/wp-content/uploads/2024/03/20-years-research-help-with-oncology-356x356.webp)
![Biological and biocompatible characteristics of fullerenols nanomaterials for tissue engineering](https://biofullerene.com/wp-content/uploads/2022/12/photo_2022-12-29_12-06-18-500x317.jpg)
![Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics](https://biofullerene.com/wp-content/uploads/2022/11/ImageForArticle_4620-500x333.jpg)
![Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin](https://biofullerene.com/wp-content/uploads/2022/11/cancer-icon-2797418_-356x356.png)
![Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis](https://biofullerene.com/wp-content/uploads/2022/11/targeted-drug-delive-356x356.jpg)
![AFM-based study of fullerenol (C60(OH)24)-induced changes of elasticity in living SMCC-7721 cells](https://biofullerene.com/wp-content/uploads/2022/11/depositphotos_352541-356x356.jpg)
![Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities](https://biofullerene.com/wp-content/uploads/2022/11/0005-009-poluchenie--475x356.jpg)
![Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue](https://biofullerene.com/wp-content/uploads/2022/11/heartAttackCardiacAr-500x346.jpg)
![Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1](https://biofullerene.com/wp-content/uploads/2022/11/1725885-500x263.png)
![Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy](https://biofullerene.com/wp-content/uploads/2022/11/istockphoto-65584859-356x356.jpg)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/1200px-L-Asparaginsu-500x295.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/5AawkyZS8dY7T9C3AZwH-474x356.jpg)
![Molecular mechanism of Gd@C 82(OH) 22 increasing collagen expression: Implication for encaging tumor](https://biofullerene.com/wp-content/uploads/2022/11/4264665-356x356.png)
![Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization](https://biofullerene.com/wp-content/uploads/2022/11/xxx040-512_78628-356x356.png)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/icon-research2x-356x356.png)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/4970457-middle-500x202.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/360_F_337277306_bOwr-500x333.jpg)
![Identification differential behavior of Gd@C 82(OH) 22 upon interaction with serum albumin using spectroscopic analysis](https://biofullerene.com/wp-content/uploads/2022/11/market-research-icon-356x356.png)
![Mono-fullerenols modulating cell stiffness by perturbing actin bundling](https://biofullerene.com/wp-content/uploads/2022/11/pressure-resistance--356x356.jpg)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/Breast-Website-Infog-356x356.png)
![Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A](https://biofullerene.com/wp-content/uploads/2022/11/1rnu_assembly-1-356x356.jpeg)
![Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats](https://biofullerene.com/wp-content/uploads/2022/11/BTOB_Oxidative_Stres-356x356.png)