Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x ≈ 22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304-a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future. Graphical Abstract Fullerene-material/TNF-α.
Related researches 41 articles
![<strong>Exploring the World of Fullerenols: A Deep Dive into Their Potential Medical Use</strong>](https://biofullerene.com/wp-content/uploads/2024/03/20-years-research-help-with-oncology-356x356.webp)
![Biological and biocompatible characteristics of fullerenols nanomaterials for tissue engineering](https://biofullerene.com/wp-content/uploads/2022/12/photo_2022-12-29_12-06-18-500x317.jpg)
![Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics](https://biofullerene.com/wp-content/uploads/2022/11/ImageForArticle_4620-500x333.jpg)
![Fullerenol C60(OH)24 effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line](https://biofullerene.com/wp-content/uploads/2022/11/212206-356x356.png)
![Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin](https://biofullerene.com/wp-content/uploads/2022/11/cancer-icon-2797418_-356x356.png)
![Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis](https://biofullerene.com/wp-content/uploads/2022/11/targeted-drug-delive-356x356.jpg)
![AFM-based study of fullerenol (C60(OH)24)-induced changes of elasticity in living SMCC-7721 cells](https://biofullerene.com/wp-content/uploads/2022/11/depositphotos_352541-356x356.jpg)
![Fullerenol/doxorubicin nanocomposite mitigates acute oxidative stress and modulates apoptosis in myocardial tissue](https://biofullerene.com/wp-content/uploads/2022/11/heartAttackCardiacAr-500x346.jpg)
![Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1](https://biofullerene.com/wp-content/uploads/2022/11/1725885-500x263.png)
![Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy](https://biofullerene.com/wp-content/uploads/2022/11/istockphoto-65584859-356x356.jpg)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/1200px-L-Asparaginsu-500x295.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/5AawkyZS8dY7T9C3AZwH-474x356.jpg)
![Molecular mechanism of Gd@C 82(OH) 22 increasing collagen expression: Implication for encaging tumor](https://biofullerene.com/wp-content/uploads/2022/11/4264665-356x356.png)
![Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization](https://biofullerene.com/wp-content/uploads/2022/11/xxx040-512_78628-356x356.png)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/icon-research2x-356x356.png)
![Aspartic acid derivatized hydroxylated fullerenes as drug delivery vehicles for docetaxel: an explorative study](https://biofullerene.com/wp-content/uploads/2022/11/4970457-middle-500x202.png)
![Study of morphological and mechanical features of multinuclear and mononuclear SW480 cells by atomic force microscopy](https://biofullerene.com/wp-content/uploads/2022/11/360_F_337277306_bOwr-500x333.jpg)
![Identification differential behavior of Gd@C 82(OH) 22 upon interaction with serum albumin using spectroscopic analysis](https://biofullerene.com/wp-content/uploads/2022/11/market-research-icon-356x356.png)
![Mono-fullerenols modulating cell stiffness by perturbing actin bundling](https://biofullerene.com/wp-content/uploads/2022/11/pressure-resistance--356x356.jpg)
![Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests](https://biofullerene.com/wp-content/uploads/2022/11/Breast-Website-Infog-356x356.png)
![Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A](https://biofullerene.com/wp-content/uploads/2022/11/1rnu_assembly-1-356x356.jpeg)
![Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats](https://biofullerene.com/wp-content/uploads/2022/11/BTOB_Oxidative_Stres-356x356.png)